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Abstract

In order to account for all possible contractions allowed by the presence of
the solder form, a generalized Hodge dual is defined for the case of soldered
bundles. Although for curvature the generalized dual coincides with the usual
one, for torsion it gives a completely new dual definition. Starting from the
standard form of a gauge Lagrangian for the translation group, the generalized
Hodge dual yields precisely the Lagrangian of the teleparallel equivalent of
general relativity, and consequently also the Einstein–Hilbert Lagrangian of
general relativity.

PACS numbers: 02.40.Hw, 04.20.Cv, 11.15.−q

1. Introduction

The geometrical setting of any gravitational theory is the tangent bundle, a natural construction
always present in spacetime. According to this structure, at each point of spacetime—the base
space of the bundle—there is a tangent space attached to it—the fiber of the bundle—on
which the gauge group acts1. Differently from internal bundles of the Yang–Mills-type gauge
theories, spacetime-rooted bundles, as for example the tangent bundle, have a quite peculiar
property: the presence of the solder form, whose components are the tetrad field [1]. For
this reason, they are called soldered bundles. An immediate consequence of this property is
that the connections living in these bundles will present, in addition to curvature, also torsion.
This is the case, for example, of the Levi-Civita connection of general relativity, which has
vanishing torsion2.

1 We use the Greek alphabet (μ, ν, ρ, . . . = 0, 1, 2, 3) to denote indices related to spacetime, and the Latin alphabet
(a, b, c, . . . = 0, 1, 2, 3) to denote algebraic indices related to the tangent space, assumed to be a Minkowski spacetime
with the metric. ηab = diag(+1, −1,−1,−1).
2 We remark that the presence of a vanishing torsion is completely different from the absence of torsion, which is
the case of the non-soldered bundles of internal (or Yang–Mills) gauge theories.
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We denote the spacetime coordinates by xμ, whereas the tangent space coordinates will
be denoted by xa . Since xa are functions of xμ, we can define coordinate basis for vector
fields and their duals in the form

∂a = (∂μxa)∂μ and ∂a = (∂μxa) dxμ. (1)

In these expressions, ∂μxa is a trivial—that is, holonomic—tetrad, with ∂μxa its inverse. A
nontrivial tetrad field, on the other hand, defines naturally a non-coordinate basis for vector
fields and their duals,

ha = ha
μ∂μ and ha = ha

μ dxμ. (2)

These basis are non-holonomic,

[hc, hd ] = f a
cdha, (3)

with

f a
cd = hc

μhd
ν
(
∂νh

a
μ − ∂μha

ν

)
(4)

the coefficient of anholonomy. A fundamental property of soldered bundles is that the
spacetime (external) and the tangent–space (internal) metrics are related by

gμν = ηabh
a
μhb

ν. (5)

A spin connection Aμ is a connection assuming values in the Lie algebra of the Lorentz
group,

Aμ = 1
2Aab

μSab, (6)

with Sab a given representation of the Lorentz generators. The corresponding covariant
derivative is the Fock–Ivanenko operator [2, 3]:

Dμ = ∂μ − i

2
Aab

μSab. (7)

Acting on a Lorentz vector field φa , for example, Sab is the matrix [4]

(Sab)
c
d = i

(
δa

cηbd − δb
cηad

)
,

and consequently

Dμφa = ∂μφa + Aa
bμφb. (8)

The spacetime linear connection �ρ
νμ corresponding to Aa

bμ is

�ρ
νμ = ha

ρ∂μha
ν + ha

ρAa
bμhb

ν ≡ ha
ρDμha

ν. (9)

The inverse relation is

Aa
bμ = ha

ν∂μhb
ν + ha

ν�
ν
ρμhb

ρ ≡ ha
ν∇μhb

ν. (10)

Equations (9) and (10) are different ways of expressing the property that the total covariant
derivative—that is, with connection term for both indices—of the tetrad vanishes identically:

∂μha
ν − �ρ

νμha
ρ + Aa

bμhb
ν = 0. (11)

From a formal point of view, curvature and torsion are properties of connections. This
becomes evident if we observe that many connections, with different curvature and torsion, are
allowed to exist in the very same metric spacetime [5]. Given a connection Aa

bμ, its curvature
and the torsion are defined respectively by

Ra
bνμ = ∂νA

a
bμ − ∂μAa

bν + Aa
eνA

e
bμ − Aa

eμAe
bν (12)

and

T a
νμ = ∂νh

a
μ − ∂μha

ν + Aa
eνh

e
μ − Aa

eμhe
ν. (13)
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Using relation (10), they can be expressed in a purely spacetime form

Rρ
λνμ = ∂ν�

ρ
λμ − ∂μ�ρ

λν + �ρ
ην�

η
λμ − �ρ

ημ�η
λν (14)

and

T ρ
νμ = �ρ

μν − �ρ
νμ. (15)

The connection coefficients can be decomposed according to3

�ρ
μν = ◦

�
ρ

μν + Kρ
μν, (16)

where
◦
�

σ
μν = 1

2gσρ(∂μgρν + ∂νgρμ − ∂ρgμν) (17)

is the Levi-Civita connection of general relativity, and

Kρ
μν = 1

2

(
Tν

ρ
μ + Tμ

ρ
ν − T ρ

μν

)
(18)

is the contortion tensor. Using relation (9), the decomposition (16) can be rewritten as

Ac
aν = ◦

A
c
aν + Kc

aν, (19)

where
◦
A

c
aν is the Ricci coefficient of rotation, the spin connection of general relativity.

2. Dual operation for soldered bundles

2.1. General notions

Let �p be the space of p-forms on an n-dimensional manifold M. Since the vector spaces �p

and �n−p have the same dimension, they are isomorphic. The choice of an orientation and the
presence of a metric on T M then enables us to single out a unique isomorphism, the so-called
Hodge dual [6]. For a p-form αp ∈ �p,

αp = 1

p!
αμ1...μp

ωμ1 ∧ · · · ∧ ωμp, (20)

its Hodge dual is the (n − p)-form �αp ∈ �n−p defined by

� αp = h

(n − p)!p!
εμ1μ2...μn

αμ1...μpωμp+1 ∧ · · · ∧ ωμn, (21)

where we have used the identification h = √−g, with h = det
(
ha

μ

)
and g = det(gμν). The

operator � satisfies the property

��αp = (−1)p(n−p)+(n−s)/2αp, (22)

where s is the signature of the spacetime metric. Its inverse is given by

�−1 = (−1)p(n−p)+(n−s)/2 � . (23)

3 All magnitudes related to general relativity will be denoted by an over ‘◦’.
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2.2. The case of non-soldered bundles

For non-soldered bundles, the dual operator can be defined in a straightforward way to act on
vector-valued p-forms. Let β be a vector-valued p-form on the n-dimensional base space M,
taking values on a vector space F. Its dual is the vector-valued (n − p)-form

� βp = h

(n − p)!p!
εμ1μ2...μn

eiβ
iμ1...μpωμp+1 ∧ · · · ∧ ωμn, (24)

where the set {ei} is a basis for the vector space F. In this case, the components βiμ1...μp have
also an internal space index i, which is not related to the external indices μi . The property
(22) is of course still valid. As an example, let us consider the Yang–Mills field strength FA

μν

in a four-dimensional spacetime. As the algebraic indices (A,B, . . .) are not related to the
spacetime indices (μ, ν, . . .), the Hodge dual is defined by [7]

� FA
μν = h

2
εμνρσFAρσ . (25)

2.3. The case of soldered bundles

The case of soldered bundles is quite different. Due to the presence of the solder form,
internal and external indices can be transformed into each other, and this feature leads to
the possibility of defining new dual operators, each one related to an inner product on �p.
The main requirement of these new definitions is that, since (22) is still valid for p-forms on
soldered bundles, we want to make it true also for vector-valued p-forms. We consider next,
in a four-dimensional spacetime, the specific cases of torsion and curvature.

2.3.1. Torsion. Differently from internal (non-soldered) gauge theories, whose dual is defined
by equation (25), in soldered bundles algebraic and spacetime indices can be transformed into
each other through the use of the tetrad field. This property opens up the possibility of new
contractions in relation to the usual definition (25). There are basically two different kinds of
terms that can be taken into account when defining a generalized dual torsion. They are given
by

� T λ
μν = hεμνρσ

[
a

(
1
2T λρσ + T ρλσ

)
+ bT θρ

θg
λσ

]
, (26)

with a, b constant coefficients4. The factor ‘1/2’ in the first term is necessary to remove
equivalent terms of the summation. Now, in a four-dimensional spacetime with metric
signature s = 2, the dual torsion must satisfy the relation

��T ρ
μν = −T ρ

μν. (27)

This condition yields the following algebraic system:

2a2 − ab = 1 (28)

2a2 + ab = 0. (29)

There are two solutions which differ by a global sign5

a = 1/2 b = −1 (30)

4 See the appendix for a demonstration that two coefficients suffice to define the generalized dual torsion.
5 We remark that, if instead of the ‘+’ sign in the middle term of (26) we had chosen a ‘−’ sign, the algebraic system
would become inconsistent.

4



J. Phys. A: Math. Theor. 42 (2009) 035402 T G Lucas and J G Pereira

and

a = −1/2 b = 1. (31)

Since we are looking for a generalization of the usual expression (25), we choose the solution
with a > 0. In this case, the generalized dual torsion reads

� T ρ
μν = hεμναβ

(
1
4T ραβ + 1

2T αρβ − T λα
λg

ρβ
)
. (32)

Defining the tensor

Sρμν = −Sρνμ := Kμνρ − gρνT σμ
σ + gρμT σν

σ , (33)

the generalized Hodge dual torsion assumes the form

� T ρ
μν = h

2
εμναβSραβ. (34)

We remark that solutions (30) and (31) are the only ones that make the dual torsion explicitly
depend on the contortion tensor.

2.3.2. Curvature. Let us consider now the curvature tensor. Analogously to the torsion case,
we define its generalized dual by taking into account all possible contractions,

�Rαβ
μν = hεμνρσ [aRαβρσ + b(Rαρβσ − Rβρασ ) + c(gαρRβσ − gβρRασ ) + dgαρgβσR], (35)

with a, b, c, d constant coefficients. We remark that the anti-symmetry in α and β is necessary
because the curvature 2-form takes values on the Lie algebra of the Lorentz group. By requiring
that

��Rαβ
μν = −Rαβ

μν, (36)

we obtain a system of algebraic equations for a, b, c, d, whose unique solution is

a = 1/2 and b = c = d = 0. (37)

This means that for curvature the generalized Hodge dual coincides with the usual definition,
that is,

�Rαβ
μν = h

2
εμνρσRαβρσ . (38)

3. An application: gravitational Lagrangian

Teleparallel gravity [8] is characterized by the vanishing of the spin connection6:
•
A

a
bμ = 0.

The curvature and torsion tensors in this case are given respectively by
•
R

a
bνμ = 0 and

•
T

a
νμ = ∂νh

a
μ − ∂μha

ν. (39)

Through a contraction with a tetrad, the torsion tensor assumes the form
•
T

ρ
νμ = •

�
ρ

μν − •
�

ρ
νμ, (40)

where
•
�

ρ
νμ = ha

ρ∂μha
ν (41)

is the Weitzenböck connection. It can be decomposed in the form
•
�

ρ
νμ = ◦

�
ρ

νμ +
•
K

ρ
νμ, (42)

6 All magnitudes related to teleparallel gravity will be denoted by an over ‘•’.
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with
•
K

ρ
νμ the contortion of the Weitzenböck torsion.

Now, teleparallel gravity corresponds to a gauge theory for the translation group [9]. As
such, its action is given by [10]

•
S = 1

ck

∫
ηab

•
T

a ∧ �
•
T

b, (43)

where k = 16πG/c4 and
•
T

a = 1
2

•
T

a
μνdxμ ∧ dxν and �

•
T

a = 1
2 �

•
T

a
ρσ dxρ ∧ dxσ (44)

are respectively the torsion 2-form and the corresponding dual form. Substituting these
expressions into equation (43), it becomes

•
S = 1

4ck

∫
ηab

•
T

a
μν �

•
T

b
ρσ dxμ ∧ dxν ∧ dxρ ∧ dxσ . (45)

Using the identity

dxμ ∧ dxν ∧ dxρ ∧ dxσ = −εμνρσh2 d4x, (46)

the action functional reduces to
•
S = − 1

4ck

∫ •
T αμν �

•
T

α
ρσ εμνρσh2 d4x. (47)

Using then the generalized dual definition (34), as well as the identity

εμνρσ εαβρσ = − 2

h2

(
δμ
α δν

β − δν
αδ

μ
β

)
, (48)

we get

•
S = 1

2ck

∫ •
T ρμν

•
S

ρμνh d4x. (49)

This action yields the Lagrangian

•
L = h

2k

•
T ρμν

•
S

ρμν, (50)

which is precisely the Lagrangian of the teleparallel equivalent of general relativity [11].
Using equations (40) and (42), a straightforward calculation shows that it can be rewritten in
the form

•
L = −h

k

◦
R − ∂μ

(
2h

k

•
T

νμ
ν

)
. (51)

Up to a divergence, therefore, the Lagrangian of a gauge theory for the translation group
with the Hodge dual given by equation (32) yields the Einstein–Hilbert Lagrangian of general
relativity. This shows the consistency—and actually the necessity—of the generalized Hodge
dual definition (34).

4. Final remarks

For soldered bundles, the Hodge dual must be generalized in order to take into account all
additional contractions allowed by the presence of the solder form. Although for curvature
the generalized dual operation turns out to coincide with the usual one, for torsion it gives
a completely new dual definition. The importance of this new definition can be verified by
analyzing several aspects of gravitation. For example, starting from the standard Lagrangian
of a gauge theory for the translation group, it naturally yields the Lagrangian of the teleparallel
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equivalent of general relativity, and consequently also the Einstein–Hilbert Lagrangian of
general relativity. This is to say, it connects the Einstein–Hilbert Lagrangian with a typical
gauge Lagrangian. It is important to remark that the generalized Hodge dual (34) has already
been used previously [12], but it was guessed just to yield the desired result. Here we have
shown that it can be obtained in a constructive way from first principles.
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Appendix. Torsion decomposition and the dual

Let us suppose that, instead of (26), the generalized dual torsion is defined by

� T λ
μν = hεμνρσ

(
αT λρσ + βT ρλσ + γ T θρ

θg
λσ

)
, (A.1)

with α, β, γ three constant coefficients. In terms of irreducible components under the global
Lorentz group [13], the torsion can be written as

Tλμν = 2
3 (tλμν − tλνμ) + 1

3 (gλμvν − gλνvμ) + ελμνρa
ρ, (A.2)

where

vμ = T ν
νμ and aμ = 1

6εμνρσ Tνρσ (A.3)

are respectively the vector and axial vector parts, and

tλμν = 1
2 (Tλμν + Tμλν) + 1

6 (gνλvμ + gνμvλ) − 1
3gλμvν (A.4)

is a purely tensor part, that is, a tensor with vanishing vector and axial torsions. Using the
generalized dual definition (A.1), a simple calculation shows that

�vμ = −6h(α − β)aμ ≡ Ahaμ (A.5)

and

�aμ = 1

3h
(2α + β + 3γ )vμ ≡ B

h
vμ, (A.6)

where A and B are two new parameters which, on account of the property (27), satisfy the
relation AB = −1. In terms of the irreducible components, the generalized dual torsion is
then found to be

�T λ
μν = h

[
±2

3
εμναβtλαβ +

A

3

(
δλ

μaν − δλ
νaμ

)
+

B

h2
ελ

μνρv
ρ

]
. (A.7)

We see from this expression that two parameters suffice to define the generalized dual.
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